		CBCS SCHEME (CENTRAL)	
USN	1	LIBRAN *** 1	5CS61
Sixth Semester B.E. Degree Examination, Feb./Mar. 2022			
Cryptography, Network Security and Cyber Law			
Tiı	me: 1	3 hrs. Max. Marks	: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.			
		Module-1	
3 1	a.	Briefly discuss the defense strategies and techniques to prevent intrusions. (06)	Marks)
	D.	what is Chinese remainder theorem? Explain. Further, compute 1 (3, 5, 2), given N $n_1 = 5, n_2 = 6, n_3 = 7$ and $x_1 = 3, x_2 = 5$ and $x_3 = 2$ (compute x). (10)	1 = 210,) Marks)
8			,
: 2	а	OR Define Hill Cipher Consider a Hill Cipher using block size of 2 ($m = 2$) Calculate	the Hill
· _	u.	Cicken for a block of a binteria (III) after $K = \begin{pmatrix} 3 & 7 \\ 3 & 7 \end{pmatrix}$	
1 6		Cipner for a block and plaintext (H, I), given $K = \begin{pmatrix} 15 & 12 \end{pmatrix}$ (08)	3 Marks)
	b.	With the help of a neat diagram explain the construction of DES. (08	3 Marks)
		Module-2	
3	a.	Explain RSA algorithm with steps. Using RSA technique perform the encrypti	ion and
2	h	decryption. For the given data: $p = 3$, $q = 11$, $e = 3$ and $m = (00111011)_2$. (08) What do you mean by weak collision resistance and strong collision resistance? Disc	3 Marks)
	0.	attack complexity of both of these collision resistances. (08	3 Marks)
4	a.	With regard to cryptographic hash, explain the followings:	
		i) Hash-based MAC	
	b	11) Digital signatures. (08) Explain E ₁ Gamal Encryption A block of plaintext has been encrypted using E ₁	3 Marks) Gamal
	0.	encryption. Assume that $p = 131$, $g = 2$ and the recipients public key = 97. What is the	he plain
		text corresponding to the cipher text, $C_1 = 103$ and $C_2 = 51$? (08)	3 Marks)
		Module-3	
5 5	a.	What is Identity-based encryption? Explain the working of it. (06	o Marks)
3	b.	Write a note on certificate-based authentication. (04	Marks)
5	С.	with the help of a diagram, discuss the sequence of messages exchanged between th	ie client

Engineerin

(06 Marks)

(08 Marks)

(08 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

6

a.

b.

and Kerberos.

G

accomplished in IKE phase 1.

1 of 2

Briefly explain the Internet Key Exchange (IKE) protocol. Also discuss the various things

OR

Show the sequence of messages and their contents involved in SSL handshake.

(04 Marks)

Module-4

- Write a note on E-mail worms. a.
- Briefly discuss the four main functions of a firewall. b.
- (06 Marks) With a functional diagram indicate the tasks performed by an Intrusion Detection System C. (IDS). (06 Marks)

OR

- 8 What is SOAP? Briefly explain. a.
 - With regard to web services security, discuss the followings: b.
 - WSDL and UDDI i)
 - ii) XML signatures
 - iii) SAML
 - iv) WS-Trust.

Module-5

- Enlist the objectives of IT Act. 9 a.
 - List any ten functions of the controller in IT Act. b. (10 Marks)
 - In which situations, the digital signature certificate is suspended? Briefly explain. (03 Marks) c.

OR

- Discuss the penalties and adjudications under section 43 of the IT Act 2000 for damage to a 10 a. computer, computer system etc. (08 Marks)
 - What is the punishment for cyber terrorism? Explain. b.
 - As per IT Act, what is the constitution of advisory committee? Discuss. C. (04 Marks)

(04 Marks)

(12 Marks)

(03 Marks)

(04 Marks)